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ABSTRACT: At the end of the 19th century, Royce uses the mathematical ideas of his 
day to describe the Absolute as a self-representative system.  Working closely with 
Royce’s texts, I will develop a model of the Absolute that is both more thoroughly 
formalized and that is stated in contemporary mathematical language.  As I develop this 
more formal model, I will show how structures found within it are similar to structures 
widely discussed in current analytic metaphysics.  The model contains structures found in 
the recent analytic metaphysics of modality; it contains Democritean worlds as defined 
by Quine; it contains Turing-computable sequences; it contains networks of interacting 
software objects as defined by Dennett.  Much of the content of recent analytic 
metaphysics is already implicit in Royce’s study of the Absolute.  Far from being an 
obsolete system, of historical interest only, Royce’s metaphysics is remarkably relevant 
today. 
 
 
1. Introduction 
 
At the end of the 19th century, Josiah Royce participated in what has come to be called 
the great debate (Royce, 1897; Armour, 2005).1  The great debate concerned issues in 
metaphysical theology.  And since metaphysics was primarily idealistic, it dealt 
considerably with the relations between the divine Self and lesser selves. 
 
After the great debate, Royce developed his idealism in his Gifford Lectures (1898-
1900).  These were published as The World and the Individual.  At the end of the first 
volume, Royce added a Supplementary Essay.  The Essay, continuing themes from the 
great debate, developed an intriguing mathematical model of the relations between the 
divine Self and lesser selves.  The second volume went on to elaborate Royce’s idealism, 
with many references to the Essay.2  After The World and the Individual, Royce 
developed a large body of work in logic and mathematics (Royce, 1905, 1951; Burch & 
Royce, 1987).  That later work has been the subject of many articles (Hocking, 1956; 
Kuklick, 1971; Martin, 1976; Crouch, 2004; Pratt, 2007; Burch, 2010; Crouch, 2011).  
And yet, despite the considerable interest in Royce’s logical work, and the importance of 
the work in the Essay for Royce’s metaphysics, the model of the Essay has been mostly 
neglected.3 
 
I have two goals.  My first goal is to more thoroughly formalize the model of the Essay 
(hereafter, the Model) and to present that Model using current mathematical language.  
My second goal is to link the Model to structures studied in recent analytic metaphysics.  
First, I will link the Model to recent analytic metaphysics of modality (that is, to the 
theory of possible worlds).  Second, I will link the Model to recent work on the 
construction of realistic physical worlds out of purely mathematical  objects.  These types 
of constructions are often associated with Quine and are closely associated with 
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structures studied in current computational metaphysics.  An important result is that any 
Turing-computable physical structure is found in the Model.  This result goes a long way 
to showing that Roycean idealistic metaphysics is compatible with modern mathematical 
physics.  Third, I will show how the Model supports networks of interacting software 
objects.  The social networks discussed by Royce are found throughout the physical 
world.  Finally, I will link the Model to recent analytic work in structuralism.  All these 
links aim to serve one purpose: to show that Roycean metaphysics is not obsolete.  On 
the contrary, one can do analytically exacting metaphysical work in a Roycean 
framework just as well as one can do such work within the frameworks of Quine, 
Plantinga, or David Lewis. 
 
 
2. The Royce Map 
 
I begin the discussion of the Model with the perfectly accurate map of England within 
England.  It is clear that the definition is recursive: it repeats the structure of England 
within England.  And it is equally clear that the perfect self-map of England is infinitely 
complex – it is an actual infinity of self-nested copies.  Royce says: 

 
suppose that some one . . . assured us of this as a truth about existence, viz., 
“Upon and within the surface of England there exists somehow . . . an absolutely 
perfect map of the whole of England.” . . . in this one assertion, “A part of 
England perfectly maps all England, on a smaller scale,” there would be implied 
the assertion not now of a process of trying to draw maps, but of the 
contemporaneous presence, in England, of an infinite number of maps . . . The 
whole infinite series, possessing no last member, would be asserted as a fact of 
existence. . . . the perfect map of England, drawn within the limits of England, 
and upon a part of its surface, would, if really expressed, involve, in its necessary 
structure, the series of maps within maps such that no one of the maps was the last 
in the series. (SE 506-507) 

 
For simplicity, suppose England is just a square crossed by a north-south road and an 
east-west road.  (England ain’t what it used to be.)  Figure 1 shows the first four iterations 
of the Royce map.  For Royce, the perfect map of England in England is an example of a 
self-representative system (SE 508-509).  A self-representative system is one that is 
“precisely represented by a proper fraction or portion of itself” (SE 509).  For instance, in 
Figure 1, the lower right quadrant of the map of England represents England itself.  To 
formalize this idea, Royce uses the notion of a one-to-one correspondence between sets.  
Following Dedekind, he affirms that a self-representative system is a set that can be put 
into a one-to-one correspondence with one of its proper subsets (SE 510-512).  Set S is a 
proper subset of set T iff every member of S is in T but not every member of T is in S.  
 
As another illustration of a self-representative system, Royce presents the series of 
natural numbers: “the numbers form, in infinitely numerous ways, a self-representative 
system . . . the number-system . . . can be put into a one-to-one correspondence with one 
of its own constituent portions in any one of an endless number of ways.” (SE 515)  Let 
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N denote the set of natural numbers {0, 1, 2, 3, . . . }.  Royce discusses several one-to-one 
functions from N into itself.  He gives these examples: the function from n to 2n; the 
function from n to n2; the function from n to the n-th prime (SE 515-517).  Each of these 
is a self-map of N.  For instance, the function that maps n to 2n puts the set of numbers 
into a one-to-one correspondence with one of its proper subsets, namely, the even 
numbers.  
 
Each self-map ƒ is a case in which a part of the number line is used to represent the entire 
number line.  This is exactly like the case in which a part of England represents all of 
England.4  Royce writes: “For just as, in the former case, the one purpose to draw the 
exact map of England within England, gave rise to the endless series of maps within 
maps, just so, I say, this one purpose involves of necessity the result that this second or 
representative series shall contain, as part of itself, an endless series of parts within parts” 
(SE 518-519).  Royce again says the iteration of maps from N into itself  “inevitably 
determines an endless [self-representative system] altogether parallel to our series of 
maps within maps of England. . . . Self-representation [of N by a map into itself] creates, 
at one stroke, an infinite chain of self-representations within self-representations” (SE 
525). 
 
From the examples of the perfect self-map of England and the self-maps of the natural 
numbers, Royce now generalizes.  Following Dedekind, he tells us that a Kette is any 
structure (K, ƒ) where K is a set and ƒ is a function of K into K (SE 520).  Although there 
are many types of Ketten, Royce says he is interested only in those in which ƒ establishes 
a one-to-one correspondence between K and one of its proper subsets (SE 522-523).5  
And, among those Ketten, Royce will focus on those for which the set is the infinite set 
of natural numbers.  Such Ketten have the form (N, ƒ) where N is the natural numbers 
and ƒ is a one-to-one function from N onto a proper subset of itself (SE 521-525).6 

 

    
 

Figure 1.  The first four iterations of a Roycean self-nested map. 
 
 
3. The Absolute is a Self-Representative System 
 
According to Royce’s idealism, reality is ultimately a perfectly self-conscious mind.  And 
Royce tells us he is mainly interested in “cases of self-representation, such as Self-
consciousness” (SE 520).  Any perfectly self-conscious mind is an ideal Self.  As self-
conscious, an ideal Self has some proper part of itself that perfectly represents itself; it 
has exactly the same infinitely self-nested structure as the exact self-map of England (SE 
553).  And, since any Kette (N, ƒ) is also a self-representative system, any ideal Self is 
also analogous to such a Kette: “the number-series is a purely abstract image, a bare, 
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dried skeleton, as it were, of the relational system that must characterize an ideally 
completed Self” (SE 526).  Royce tells us explicitly that the structure of any Kette (N, ƒ) 
is “precisely parallel to the structure of an ideal Self” (SE 535).7  He writes 
 

The intellect has been studying itself, and, as the abstract and merely formal 
expression of the orderly aspect of its own ideally conceived complete Self, and 
of any ideal system that it is to view as its own deed, the intellect finds precisely 
the Number System, – not, indeed, primarily the cardinal numbers, but the ordinal 
numbers.  Their formal order of first, second, and in general, of next, is an image 
of the life of sustained, or, in the last analysis, of complete Reflection.  Therefore, 
this order is the natural expression of any recurrent process of thinking, and, 
above all, is due to the essential nature of the Self when viewed as a totality.  (SE 
538) 

 
For Royce, the Absolute Self is an ideal Self, and as such “the Absolute must be a self-
representative ordered system, or Kette” (SE 545).  It has the form (N, ƒ).  He also says 
that the Absolute “defines itself as a self-representative system” (SE 545, my italics).  Yet 
the self-consciousness of the Absolute is not restricted to any single type of self-
representation.  According to Royce, just as there can be many different perfect maps of 
England in England, or many self-maps of the number system into itself, so also there can 
be many different self-representations of the Absolute within the Absolute: 
 

As the England of our illustration could be self-mapped, if at all, then by 
countless series of various maps, not found in the same part of England and not in 
the least inconsistent with one another; and as the number-series – that abstract 
image of the bare form of every self-representative system of the type here in 
question, – can be self-represented in endlessly various ways, – so, too, the self-
representation of the Absolute permitted by our view is confined to no one 
necessary case; but is capable of embodiment in as many and various cases of 
self-representation, in as many different forms of selfhood, each individual, as the 
nature of the absolute plan involves.  So that our view of the Selfhood of the 
Absolute, if possible at all, leaves room for various forms of individuality within 
the one Absolute. (SE 546) 

 
The Absolute represents itself to itself in many ways, each of which is a “form of 
selfhood” for the Absolute (SE 546).  And these many forms of selfhood are different 
“forms of individuality within the one Absolute” (SE 546).  On the Model that Royce is 
developing, the Absolute seems to contain all these forms of selfhood just as the set of all 
Ketten of the form (N, ƒ) contains its members.  Each form of selfhood in the Absolute is 
analogous to an infinite Kette (N, ƒ).  Obviously, these forms of selfhood are not finite 
(and they certainly are not finite human selves).8  For, as Royce makes clear, “the word 
‘finite’ is, with technical accuracy, used for systems that are not self-representative” (WI2 
447, italics by Royce).  On the contrary, as a self-representative Kette, each form of 
selfhood is an infinite form of selfhood; it is a form of absolute selfhood. 
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On the one hand, the Absolute contains infinitely many forms of absolute selfhood.  On 
the other hand, one and only one of these forms is the Absolute Self.  From out of the 
infinity of forms of absolute selfhood, Royce tells us that exactly one is selected to be the 
Absolute Self.  This selection is self-selection: Royce says that the Absolute Self is a “a 
self-selected case of its type”(SE 566).  This sounds like the Absolute Self paradoxically 
pulls itself up out of the Absolute by its own bootstraps.  To avoid any paradox, it seems 
better to say that, among the infinitely many forms of absolute selfhood within the 
Absolute, exactly one is self-selective or self-affirmative, and that self-affirmative form is 
the Absolute Self.9  The distinction between the Absolute Self and other forms of 
selfhood corresponds to the distinction between realized and unrealized (actualized and 
unactualized) forms of selfhood.  Royce affirms that the Absolute Self is “an individual 
selection from an infinitely wealthy realm of unrealized possibilities” (WI2 448).  The 
unselected forms remain unactualized as barely possible absolute selves (SE 566-569).  
The Absolute is complete with respect to these possible forms (CG 198, 208-209; SE 
566-569, 580).  
 
At this point, Royce has developed his mathematical Model of absolute selfhood.  The 
Absolute contains every possible absolute self.  Mathematically, every possible absolute 
self is a Kette of the type (N, ƒ).  Hence the total system of possible absolute selves is 
isomorphic to the set of all (N, ƒ).  Only one of these possible absolute selves is actual (it 
is the Absolute Self) while the others remain unactualized bare possibilities.  To be sure, 
Royce does not literally identify the Absolute with the set of all Ketten of the type (N, ƒ), 
nor does he literally identify the Absolute Self with one of these Ketten.  On the contrary, 
he is clear that “the numbers, taken in abstract divorce from life, are mere forms” (SE 
580).  The Model merely outlines the skeleton of selfhood (SE 526, 527) and consists of 
only “dry bones” (SE 580).  Nevertheless, Royce finds the Model useful, and refers to it 
from the start to the finish of the Second Volume of The World and the Individual.  The 
mathematical form of the Absolute merits deep study.  All formal work that follows is 
done strictly within the Model.  However, since it is tedious to explicitly preface every 
sentence with “In the Model, . . .”, this prefacing is now assumed where needed. 
 
 
4. Thought-Streams in the Absolute Self 
 
Royce tells us that a self contains a well-ordered discrete series of thoughts (WI2 105-
107) and that every such series of thoughts is recursively generated (WI2 191-192).  
Throughout WI2, he refers to recurrent processes of thought.  As a term of art, let us say 
these are thought-streams.  Royce provides many examples of these thought-streams in 
the Essay.  The series 〈M, C(M), C(C(M)), . . . 〉 is a thought-stream where M is any 
thought and C is any operation mapping thoughts onto thoughts (SE 496-497).  Royce 
shows that Dedekind’s Gedankenwelt determines a thought-stream (SE 511-513, 530).  
The thought-stream is 〈S, TS, TTS, . . . 〉 where S is one of my thoughts and T is the 
thought that S is one of my thoughts. Royce further illustrates this using the thought 
“Today is Tuesday” (SE 532-534).  The series 〈P, TP, TTP, . . . 〉 where P is a thought 
and T is Bolzano’s truth-operator forms is a thought stream (SE 544).  The series 〈P, KP, 
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KKP, . . . 〉 is a thought-stream where P is a thought and K is the knowledge operator (SE 
578). 
 
Within any Kette (N, ƒ), Royce uses the numbers in N to model thoughts and the 
recursive application of ƒ to model the passage from one thought to another.  The series 
of prime numbers is like a thought-stream (SE 575-578).  Royce defends the image of the 
absolute thought-process as “wandering from number to number” in a Kette (SE 587-
588).  Now, since every Kette contains N, the set of all Ketten of the form (N, ƒ) can be 
thought of as the set N along with the set of all self-maps of N. If we let F be the set of all 
functions of N into itself, then each Kette is (N, ƒ) such that ƒ is a member of F. The set F 
models all the possible ways that the Absolute represents itself to itself.  Hence there is 
some sense in which it is an ultimate totality of possibilities.  Prior to the Essay, in The 
Conception of God, Royce said that the total system of possibilities is a group (CG 208-
211).  However, he did not elaborate.  Here it is interesting to note that F forms a 
semigroup.10 
 
Every Kette (N, ƒ) determines a series of paths.  For any Kette (N, ƒ), every path through 
the Kette starts with some number n in N and recursively applies ƒ.  The path s(ƒ, n) in 
the Kette (N, ƒ) is the series 〈n, ƒ(n), ƒ(ƒ(n)),  . . . 〉.  For example, suppose the Kette 
involves the doubling function d that maps n onto 2n.  Then the path s(d, 1) is 〈1, 2, 4, 8, . 
. . 〉 while the path s(d, 3) is 〈3, 6, 12, 24, . . . 〉.  Within the Model, each path s(ƒ, n) in 
any possible absolute self is some possible absolute thought-stream.  It is a possible 
absolute stream of consciousness or mental activity.  Now let S be the set of all s(ƒ, n) 
such that ƒ is in F and n is in N.  Thus S is the set of all possible thought-streams in the 
Absolute.  Some of these are within the Absolute Self (the actual Kette) while others lie 
in Ketten that remain unactualized as barely possible forms of absolute selfhood. 
 
According to Royce, our world is ultimately one of the thought-streams in S (WI2 105-
107).  And, in his detailed discussion of possibility in the Essay, Royce argues that both 
our world and its counterfactual variants are also ultimately thought-streams in S (SE 
567-569, 573-575, 580-581).  Thus every possible ideal world is one of the thought-
streams in S, so that S is the set of all possible ideal worlds.  Of course, idealism asserts 
that every possible physical world is based on some ideal world; assuming this idealist 
hypothesis, the set of all possible worlds is identical to the set of all possible ideal worlds.  
Hence the set S is the set of all possible worlds.  It is analogous to the Leibnizian Palace 
of the Fates (Theodicy, secs. 414-417).  But this leads into the metaphysics of modality. 
 
 
5. The Roycean Metaphysics of Modality 
 
Although it is well-known that one of Royce’s students, Clarence Irving Lewis, went on 
to do extensive work in formalizing the metaphysics of modality, Royce himself does not 
get enough credit for his own work in the metaphysics of modality.  For within both The 
Conception of God and The World and the Individual (especially the Supplementary 
Essay), there are extensive discussions of the metaphysics of modality.   
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Royce talks about counterfactuals (contrary-to-fact hypotheses) and alternative histories 
of our world (CG 193-200; SE 567-569, 573).  When he is talking about the possible 
double of the hero in the story by Amadeus Hoffman (SE 574), Royce is talking about 
counterparts in other possible worlds.  And Royce affirms that the Absolute, by virtue of 
its omniscience, is modally complete: it contains all possible worlds within its abstract 
thoughts (CG 198-199; SE 567-569, 580).  Royce discusses these other possible worlds at 
length and explicitly refers to them as “possible worlds” (CG 212-216; SE 569).  
 
Today it is well-known that the logical modes of possibility and necessity can be 
analyzed in terms of quantification over possible worlds.  And C. I. Lewis was among the 
first to analyze necessity in terms of truth at every possible world.11  Royce, of course, did 
not analyze these modes using quantification. Nevertheless, Royce is not just another 
thinker who vaguely talks about possible worlds.  For Royce, through the Model, has 
provided an explicit domain of modal quantification, namely, the set of all possible 
thought-streams S.  Hence the use of modern quantificational techniques to analyze 
modality is entirely consistent with Royce’s metaphysics of modality.  Clearly, this is 
consistent with modern analytic modal logic.  Roycean modal logic quantifies over the 
set S of all possible thought-streams.  For any proposition P, it is possible that P iff P is 
true at some thought-stream in S and it is necessary that P iff P is true at every thought-
stream in S. 
 
Within his metaphysics of modality, Royce distinguishes between those possible thought-
streams that are actualized and those that remain unactualized (CG 200-203, 212-216; SE 
573-576).  Any unactualized thought-stream is a bare or unrealized possibility while any 
actualized thought-stream is a genuine or real possibility.  Royce affirms that exactly one 
thought-stream is actual (CG 212, 214).  Within the Model, this means that exactly one 
path s(ƒ, n) in the actual Kette (N, ƒ) is an actual thought-stream.  Since our physical 
world is actual, this thought-stream somehow corresponds to our physical world. 
 
Royce defines the difference between the actual and the unactual in terms of the focus of 
the Absolute Self.  Absolute Attention focuses on exactly one thought stream to the 
exclusion of all others (CG 200-203, 212-214; SE 569).  Royce tells us that the self-
focusing of the Absolute Attention is entirely free: “the attentive aspect of the Absolute 
Experience appears as itself possessed of absolute Freedom” (CG 202) and this is a 
“transcendent Freedom” (CG 203).  This freedom is the expression of the Absolute’s own 
self-definition as Absolute Love (CG 215-216).  The actuality of this world instead of 
some other is “the actual Divine Love for this world” (CG 216, italics by Royce).  
 
This loving focus of the Absolute Attention specifies the Absolute Will (CG 212; SE 573, 
581n).  Hence the difference between unactualized and actualized possibilities is the 
difference between unwilled and willed possibilities (SE 573-576).  For any possible 
thought-stream s in any possible absolute self, s is an unactualized possibility if s is 
thought but not willed while s is an actualized possibility if s is both thought and willed.  
Within the Model, for any path s(ƒ, n) in any Kette (N, ƒ),  the path s(ƒ, n) is unactual if 
thought but not willed and actual if thought and willed.  Of course, the unique actual 
thought-stream lies within the set of paths in the Kette of the actual absolute self. 
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6. Constructing the Physical World 
 
On the one side, Royce argues that our world is ultimately an ideal thought-stream of the 
form 〈n, ƒ(n), ƒ(ƒ(n)),  . . . 〉.  As such, it is a well-ordered discrete series of natural 
numbers.   On the other side, Royce acknowledges that modern mathematical physics 
says that the world is accurately described by a system of differential equations (WI2 
224-225).  As such, it is a system of material particles moving along rigidly defined 
continuities.  Of course, as an idealist, Royce affirms that the physical world is to the 
ideal world as surface structure to deep structure.12  If that affirmation is to be anything 
but idle, then Royce must show how to construct the physical world from the ideal world.  
But how to carry out this construction?  Royce is well-aware of the difficulties involved 
in answering that question (WI2 IV).  And the fact that Royce’s Model of the Absolute is 
already mathematical enables his idealism to answer this question in a scientifically 
serious way. 
 
According to Royce’s Model, to be an ideal world is to be a thought-stream in S.  As a 
thought-stream, each ideal world has a deep temporal character.  Time in any ideal world 
is a series of stages that is well-ordered like the natural numbers (WI2 137-139, 146-147).  
Ideal time is therefore both discrete and one-way infinite (it begins with an initial ideal 
event at the initial ideal moment corresponding to the initial natural number 0). As a 
thought-stream, each ideal world also has a deep causal character.  Its causal character 
manifests itself on the physical surface as a system of invariant laws (WI2 188-191).  
Royce also says that the causal character of any thought-stream is purposive (WI2 192).  
The purposiveness of the ideal world manifests itself as irreversibility (WI2 101), which 
modern mathematical physics describes using the laws of thermodynamics (WI2 216-
219).13 
 
As the Absolute Will actualizes a thought-stream, it also actualizes the physical surface 
structure that emerges from that ideal deep structure.  Absolute Insight sees the 
emergence of this physicality by constructing it (SE 573; WI2 52, 104, 133-151).  For 
every thought-stream in S, there are many ways for Absolute Insight to constructively 
work up its numerical content into some basic physical world.  Over any thought-stream, 
the Absolute decisively selects the construction of one basic physical world (SE 573).  
Any basic physical world is 〈Q1, . . Qm, E1, . . . En〉 where the Qi are sets of basic physical 
objects and the Ei are basic physical properties and relations.14  The Qi and Ei must be 
derived from the numbers in the thought-stream s(ƒ, n) by mathematical construction.  
For example, given some thought stream s(ƒ, n), the Absolute may use its contents to 
construct a basic physical world 〈Q, E1, E2, E3〉 where Q is a set of space-time points, E1 is 
a spatial neighbor relation among those points, E2 is a temporal neighbor relation, and E3 
is a matter-field indicating the absence or presence of a particle at a point.  These space-
time points, their neighbor relations, and their field values, are derived from the numbers 
in the thought-stream s(ƒ, n) by the mathematical constructive activity of the Absolute. 
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To move from an ideal world to a physical world, Royce uses recursive mathematical 
constructions.  The early lectures in WI2 explain these recursive constructions in detail.  
Physical time is constructed from ideal time.  If physical time is discrete, then the 
construction is identity: the n-th physical moment is identical to the n-th ideal moment.  
However, if physical time is dense or continuous, then the construction must go beyond 
identity.  Here Royce shows, using the recursive schema of interpolation, how a dense 
physical series of moments can be built up from a discrete ideal series (WI2 62-95).   
 
Royce explicitly illustrates this schema (WI2 84-86).  He starts with a pair of points 〈a, 
b〉; between them, he inserts a third point m, to make the triple 〈a, m, b〉.  Within this 
triple, m can be interpreted as being half-way between a and b.  He now repeats the 
operation of inserting points between pairs: he inserts m1 between a and m, and m2 
between m and b, thus making 〈a, m1, m, m2, b〉.  Royce says the result is “a series 
resembling a collection of points in order on one line” (WI2 85).  He explicitly shows this 
in his text as: 
 
 a . . . . m1 . . . . m . . . . m2 . . . . b. 
 
Within this illustration, the quarter points of a physical line segment now supervene on 
the ideal items.  Thus 0 supervenes on a; 1/4 on m1; 1/2 on m; 3/4 on m2; and 1 on b.   
Each next repetition of the interpolation constructs an ideal series on which a more finely 
divided physical line segment supervenes.  The next interpolation makes 
 
 a . . m3 . . m1 . . m4 . . m . . m5 . . m2 . . m6 . . b. 
 
As a result of this interpolation, the points of a physical line segment that is divided into 
eighths now fall on these ideal items.  Thus 0 falls on a; 1/8 on m3; 1/4 on m1; 3/8 on m4; 
and so on.  Each next interpolation doubles the refinement of the physical line; in the 
limit, the result is an ideal series of points on which a dense physical line supervenes.  By 
analogous reasoning, Royce argues that any dense physical order can be constructed from 
some discrete ideal order.  He mentions that orders for “distances, times, masses, 
temperatures, pressures” can be thus constructed (WI2 75). 
 
Although this recursive construction is fine as far as it goes, it hardly goes far enough.  
The physical world is obviously far more complex than any collection of dense physical 
lines (that is, dense dimensions for physical quantities).  For the physical world is a 
spatio-temporal-causal system involving apparently material things.  Royce is well-aware 
that modern mathematical physics uses a system of differential equations, which are both 
continuous and non-purposive, to accurately describe the physical world (WI2 224-225).  
If Royce wants his metaphysics to be taken seriously in the light of modern mathematical 
physics, then he must show how an apparent but realistic system involving material 
things in spatial, temporal, and causal relations can be constructed from an ideal 
temporal-causal series.  He must show how to use a discrete and purposive series of 
natural numbers to construct an apparently continuous and non-purposive physical world.  
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The construction is made problematic by the fact that, according to Royce’s Model of the 
Absolute, every ideal temporal-causal series is a series of natural numbers.  How can a 
realistic physical world be constructed from a series of natural numbers?  Royce must 
show how to use a thought-stream s(ƒ, n) to construct worlds with multi-dimensional 
spaces containing material things regulated by causal laws.  Royce does affirm that “the 
infinitely numerous properties of the numbers need some concrete representation” (SE 
572).  Unfortunately, Royce does not provide any such concrete representations – he does 
not provide any physical constructions.15  It is necessary to provide them for him.  
Fortunately, this is not hard to do, given his discussion of the natural numbers in the 
Essay. 
 
 
7. The Construction of Basic Physics 
 
Against the critics who declare that the natural numbers are sterile and boring, Royce 
tells us that every natural number contains rich inner depths (SE 576-577).  His 
discussion of the perfect numbers shows that Royce is interested in these depths (SE 
577).16  The internal meaning of any number can be unpacked through mathematical 
analysis.   
 
One way to unpack the internal meaning of numbers is to look at how they are 
represented by strings of digits.  Any natural number has a representation as a series of 
decimal digits (0 through 9).  In the decimal system, every number is defined as a sum of 
powers of ten.  Thus 205 is defined as the sum of 5 ones, 0 tens, and 2 hundreds (and 0 
thousands, 0 ten-thousands, etc.).  More formally, the number 205 is the series 〈5 ones, 0 
tens, 2 hundreds, 0 thousands, 0 ten-thousands, . . . 〉.  Or just 〈5, 0, 2, 0, 0, . . . 〉.   
 
Although we represent numbers using decimal digits, computers represent them using 
binary digits (as bit strings made of 0s and 1s).  Rather than using powers of ten, the 
binary system uses powers of two.  The powers of two are one, two, four, eight, sixteen, 
thirty-two, and so on.  Thus 205 is defined as the sum of 1 one, 0 twos, 1 four, 1 eight, 0 
sixteens, 0 thirty-twos, 1 sixty-four, and 1 one-hundred-and-twenty-eight (and 0 two-
hundred-and-fifty-sixes, etc.).  More formally, the number 205 is the bit string 〈1, 0, 1, 1, 
0, 0, 1, 1, 0, 0, 0, . . . 〉.  Since every natural number is finite, it has a representation as a 
bit string in which there are only finitely many ones.17  It can be represented by a bit 
string in which there is some rightmost 1 followed by infinitely many 0s marching off to 
the right. 
 
Any series of bits is a one-dimensional one-way infinite discrete space.  It can be made 
dense by the interpolative construction offered by Royce.  However, the space in our 
physical world has many dimensions.  It is therefore necessary to show how to use a bit 
string to construct a space that has many dimensions and that is infinite in all directions.  
This is easily done using an idea based on Ulam’s Spiral (Stein et al., 1964).18  The idea 
is to wind the bit string around itself so that it forms a coil or spiral.  This is analogous to 
taking a linear measuring tape and winding it up around itself into a spiral.  As the tape is 
wound around itself, the spiral fills a two-dimensional space. 
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For example, the decimal number 9227 is 20 + 21 + 23 + 210 + 213, which is equivalent to 
the bit string 〈1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, . . . 〉.  The left part of Figure 2 
shows how to wind this bit string around itself to make a spiral.  The right part of Figure 
2 shows the two-dimensional  discrete space (a grid) filled by this bit spiral.  Of course, 
Figure 2 can only show a few turns of the spiral so that it fills sixteen cells.  The 
construction is easily extended to three or more dimensions.  For our sample physical 
construction, every bit in the binary representation of any number in s(ƒ, n) is a point in 
physical space-time; the location of bits on the grid defines the spatial neighbor relation 
among bits; and bits from any two temporally adjacent natural numbers in s(ƒ, n) are 
temporal neighbors.  
 

 
 

Figure 2.  Winding a 1D string onto a 2D grid. 
 
As any bit string gets wound around itself into a spiral, that winding distributes 0s and 1s 
to points in space.  This distribution has a physical interpretation: a point is occupied by 
some bit of mass-energy if it is defined by a bit that is 1 and a point is empty if it is 
defined by a bit that is 0.  The assignment of a bit of mass-energy to every point in space 
defines a matter field.  Since the construction associates each point with a value 0 or 1, it 
defines a binary (Boolean) matter field.  If the amount of mass-energy that is present at 
some point is 1, then a material particle is present at that point.  Since each natural 
number, represented as a bit string, contains only finitely many 1s, it determines a matter 
field with only finitely may material particles.  Hence this construction shows how a 2D 
discrete infinite space along with binary matter field supervenes on a natural number.  
Each of these structures is a complete snapshot of a very simple physical world at a time.   
 
A temporal sequence of such snapshots is a (2+1)-dimensional discrete space-time with a 
binary matter field with finitely many particles.19  Within recent analytic metaphysics, 
these structures are instances of Democritean worlds (Quine, 1969: 147-152).  According 
to the absolute interpretation just constructed, a (2+1)-dimensional Democritean world 
supervenes on every possible ideal thought-stream.  Of course, there are richer absolute 
interpretations involving more dimensions, dense dimensions, and matter fields with 
more that just two values.  But those interpretations merely involve more technicalities; 
for our philosophical purposes, these simple Democritean worlds are enough. 
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For example, when the number 9227 is converted into a bit string and then wrapped 
around itself to make a spiral, the result is the leftmost 4 by 4 bit matrix shown in Figure 
3.  The number 9227 supports that bit matrix.  Figure 3 also shows four other numbers, 
and the 4 by 4 bit matrices they support.  The series of numbers in Figure 3 is one of the 
series in some thought-stream s(ƒ, n) in the Absolute.  The horizontal arrows represent 
the iteration of ƒ while the vertical arrows indicate that the number supports the matrix.  
Each 1 indicates some presence of matter (some particle) at its point in space while each 
0 indicates the absence of any particle.  Hence each matrix is a matter-field. 
 

 
 

Figure 3.  A series of matrices over a thought-stream.  
 
 
8. The Construction of Material Things 
 
This sample physical construction has defined a set of space-time points; a spatial 
neighbor relation on those points; a temporal neighbor relation; and a matter field.  These 
basic physical objects and relations are sufficient for some very complex physics.  
Nevertheless, the movement from the ideal thought-stream s(ƒ, n) to the physical world 
remains incomplete: it does not yet include any construction of material things and their 
causal laws.  To move from the ideal thought-streams in the Absolute Mind to material 
things regulated by causal laws, it is necessary to move through computation.  It is worth 
noting that one of Royce’s students, Norbert Wiener, links Royce to modern computing.20 
 
Every ideal thought-stream is series of natural numbers; but any natural number can be 
represented as a bit string (a series of 0s and 1s).  Any bit string can be represented as an 
ideal one-way infinite tape made of cells.  Each cell contains either a 0 or a 1.  These 
tapes can serve as the memories for simple computers like Turing Machines (Turing, 
1936; Hopcroft, 1984).21 Every Turing computation starts with some initial natural 
number n represented as a bit string written on a tape.  And every Turing computation 
proceeds by iterating some function ƒ from N to N.  Each application of ƒ to the previous 
tape yields the next tape.  Hence every Turing computation is a path s(ƒ, n).  From which 
it follows that every Turing computation exists in the set S of possible thought-streams in 
the Absolute. Some Ketten in the totality of possible absolute selves perform only Turing 
computations.  These Ketten are ideal Turing Machines.  And since the Absolute contains 
all possible s(ƒ, n), it contains thought-streams that compute non-Turing computable 
functions like the Busy Beaver function.22  The Absolute is richer than mere Turing 
computing. 
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A Democritean world is Turing-computable iff every next state of space is derived from 
its previous state by some Turing-computation.  The history of any Turing-computable 
Democritean world is the execution of an ideal Turing Machine.  For every Turing-
computable Democritean world, there is an ideal thought-stream in s(ƒ, n).  Let T be the 
set of all Turing-computable Democritean worlds.  The set T is a subset of S.  The 
construction of physical worlds with material things and causal laws begins with the 
thought-streams in T.  Turing-computability ensures that the thought-streams in T are not 
chaotic but are lawfully ordered.  The set T contains every Turing-computable model of 
our best physical theories (including sophisticated models such as those of lattice 
quantum field theory).  Hence Royceans can claim to have gone a long way to satisfying 
the demands of modern physics.  The set T contains every computable substructure of our 
physical world.  And it may contain the entire structure of our physical world.23 
 
Every physical world in the set T supervenes on its underlying thought-stream as 
software supervenes on hardware.  Every possible thought-stream in the Absolute is 
computationally foundational – it is the hardware relative to which everything else is 
software.  Every physical world results from some absolute interpretation of some 
possible thought-stream.24  Hence every physical world is a software world.  It is a system 
of software objects.  Software objects form layers.  For any thought-stream that is 
interpreted as a Turing-computable Democritean world, the lowest software level is the 
level of the bit strings that supervene on the natural numbers.  These bit strings are first-
level software objects.  They are the basic physical objects.  Software objects can be 
stacked: lower-level software objects support higher-level software objects; conversely, 
higher-level software objects supervene on lower-level software objects.  These higher-
level software objects are derived physical objects.  When the first-level bit strings are 
interpreted spatially using Ulam’s Spiral, the result is a higher level of software objects.  
Hence each 2D spatial grid is a second-level software object (on a bit string on a natural 
number).  Material things and their causal laws are found within these levels of software 
objects.  
 
 
9. An Illustration of the Construction of Physics 
 
Many Turing-computable Democritean worlds support rich stacks of higher-level 
software objects.  It will be useful to focus on one genus of these worlds, namely, cellular 
automata (Chopard & Droz, 1998).  A series of snapshots of the world is a cellular 
automaton iff there is one causal law that describes how the value of every spatial point 
changes over time.  The causal law is a program that can contain many rules.  A good 
way to illustrate a cellular automaton involves laying coins on a grid.  Each square on the 
grid is a point (or cell) in space and each coin indicates the value of that cell (with heads 
equal to 1 and tails equal to 0).  The distribution of coins defines a binary matter field. 
 
The first illustration of a cellular automaton merely flips coins.  To see it in action, start 
by placing one coin on each square of a tic-tac-toe board, randomly heads or tails up.  
Apply the following program to each coin: if the coin shows heads, flip it to show tails; if 
it shows tails, flip it to show heads.  Once you’ve applied this rule to each coin, you’ve 
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used the same program to change the value of the matter field at each point in space.  
You’ve updated the entire board, and thus you’ve generated the next snapshot of the 
physical world.  The repeated updating of the board generates a temporal series of 
snapshots, and that temporal series is a cellular automaton.  Each snapshot corresponds to 
a number, interpreted as a bit string that is spirally wrapped onto the tic-tac-toe board.  
Figure 4 shows a short thought-stream that supports one of these bit-flipping cellular 
automata.  Figure 4 uses a black square for heads (for 1s) and a white square for tails (for 
0s).25 
 

 
 

Figure 4. A short thought-stream supports a cellular automaton. 
 
The second illustration of a cellular automaton is known as the game of life (Gardner, 
1970).  Since the causal law in the game of life involves some tedious book-keeping, it’s 
best to watch it run on a home computer (many software packages for running it are 
freely available).  Although the dynamics of the game of life look simple, they are 
literally infinitely rich, and the game of life has been the object of serious mathematical 
and philosophical study (e.g. McIntosh, 1991; Beer, 2004; Hovda, 2008). 
 
To see a very simple example of the game of life, start by placing a coin tails up on each 
square of a 5-by-5 board.  Pick a row of exactly three coins in the center of the board and 
turn them over so that they show heads.  For each coin, depending on which side it 
shows, apply one of these rules: (1) if the coin shows heads, and it is surrounded by two 
or three neighbors that show heads, then it mark it as stable; otherwise, mark it as 
unstable; (2) if the coin shows tails, and it is surrounded by exactly three heads, then 
mark it as unstable; otherwise, mark it as stable.  After you’ve marked each coin as stable 
or unstable, flip every unstable coin, and leave every stable coin as it was.  If you 
repeatedly apply this program to the board with three heads in a row (and all others tails), 
you will notice that the orientation of the row of three heads alternates, as shown in 
Figure 5.  Figure 5 uses a black square for heads (1s) and a white square for tails (0s).26 
 

 
 

Figure 5. A thought-stream supports a trivial game of life.  
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For every possible game of life, there is an ideal thought-stream in the Absolute that 
supports that game.  And games of life support rich stacks of software objects.  Dennett 
(1991) says there are three main software levels in the game of life.  The first level is just 
the bit strings that supervene on the numbers in the thought-stream.  The second level is 
the physical level.  The objects on this level are second-level software objects.  At this 
level, the ontology consists of the space-time points (the “cells”) of the life grid.  The 
language of this level talks about points and their matter field values (0 or 1).  It talks 
about spatial and temporal relations.  It talks about the events that cause a point to change 
its state according to the basic causal law of the game of life.  At this level, prediction 
concerns only the use of the basic life law to predict the states of points at the next time. 
 
The third level is the design level.  The objects on this level are third-level software 
objects; they are patterns of activity in space.  Figure 6 shows the pattern known as the 
glider.  The distributions or patterns of 1s in the matrices in Figure 3 correspond to the 
black squares (the active points) in Figure 6.  This shows how a number in an ideal 
thought-stream supports an energetic pattern in space.  Dennett says that the design level 
has its own ontology (1991: 39).  It supports patterns that persist, move and causally 
interact.  The glider has a direction and velocity.  It is possible to write equations of 
motion for the glider that are independent of the equations for the changes of the matter 
field.  These equations of motion are an example of a Roycean causal law (WI2 188-
191). 

 

Time 1 Time 2 Time 3 Time 4 Time 5  
Figure 6.  The apparent motion of a glider.  

 
Things like gliders are on the lowest sublevel of the design level.  The design level 
supports a part-whole relation.  Wholes are higher-level patterns that supervene on 
networks of lower-level parts.  Dennett says “one can set oneself the task of designing 
some interesting supersystem out of the ‘parts’ that the design level makes available.” 
(1991: 40)  According to Dennett (1991: 40), the most impressive result of this design 
activity is the construction of a universal Turing machine (a UTM).  There is a proof that 
it is possible to construct UTMs on the life grid (Poundstone, 1985: 197-213).  And 
Rendell has recently shown how to carry out the construction (2002). 
 
At the very top of the hierarchy of sublevels within the design level, there is the level of 
the UTM itself.  At this level, computational language is used to describe what is 
happening on the life grid.  Dennett says “As a first step one can shift from an ontology 
of gliders and eaters to an ontology of symbols and machine states, and, adopting this 
higher design stance toward the configuration, predict its future as a Turing machine.” 
(1991: 41)  UTMs support many levels of their own.  It is possible to move from talking 
about tape squares to talking about registers, arrays, linked lists, and other software 
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objects.  Given UTMs, it is possible to construct software objects that model complex 
psychologies. 
 
The fourth level is the intentional level.  Objects on this level are fourth-level software 
objects.  Dennett imagines two UTMs interacting with one another in some game of life.  
Since UTMs can play chess, these two UTMs can play chess with one another.  The 
result is that a novel taxonomy of objects emerges from the activity of the UTM.  These 
objects include things like chess squares and chess pieces.  Thus “one can shift to an 
ontology of chess-board positions, possible chess moves, and the grounds for evaluating 
them; then, adopting the intentional stance toward the configuration, one can predict its 
future as a chess player.” (1991: 41)  These chess players are themselves intentional – 
they are minds.  They have psychologies.  At this level, there are finite selves interacting 
in a small society.  Any mind (or community of minds) that can be realized by some 
UTM exists as a fourth-level software object over some thought-stream in the Absolute.  
The construction of these UTMs shows exactly how finite selves can be encoded in the 
Absolute Self.   
 
Although human selves are hardly as simple as the chess-playing UTMs described by 
Dennett, there are similarities.  Our brains are at least finitely powerful computers.  As 
our senses are bombarded with phenomenal stimuli, our brains seek to find patterns in 
them.  We thus project into the phenomenal world those patterns that best serve our 
pragmatic interests.  For instance, we project systems of differential equations into the 
phenomenal world (WI2 224-225).  However, those equations are excessively precise and 
so cannot be taken literally.  For example, the Lotka-Volterra differential equations 
describe the mutual fluctuations in a population of predators and their prey.  Although 
those equations involve continuous variables, animal populations are in fact merely 
discrete sets.  The equations are excessively precise.  The Navier-Stokes differential 
equations for fluid motion likewise falsify that fluidity by treating a discrete population 
of moving particles as if it were a continuous substance.  Advocates of digital mechanics 
support Royce by arguing that the continuity is a false projection into an ultimately 
discrete reality.27 
 
 
10. Roycean Philosophy of Nature 
 
Our physical world is far more complex than any game of life (and almost certainly far 
more complex than any cellular automaton).  However, our world is similar to a cellular 
automaton insofar as it consists of a stack of software levels.  Each level is a network of 
interacting software objects.  But what are these software objects?  I will work through 
four theses, based on Royce’s texts, for the existence of software objects.  The series 
converges to a fifth thesis that shows how finite selves exist in our physical world. 
 
Thesis 1 says that for every human body H, there exists a human mind H* such that H is 
the sign of H* (N1; WI2 III).  Royce says that “the very bodies of our human fellows” 
express themselves in “gestures, words, deeds” which “indicate the inner life of the social 
fellow-being who thus expresses himself” (N2 581).  Every human mind has certain 
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psychological features (e.g. consciousness, rationality, ethical engagement).  Every 
human mind runs at the human time-rate.  Sets of human minds form human social 
networks.  The minds in those networks interact via linguistic signals.  Human networks 
are organized according to certain structural principles (they have certain social 
topologies). 
 
Although Thesis 1 is true, it is not the whole story (WI2 III).  The experience of human 
social life leads to the conception of non-human nature (N1 470, 471, 472; WI2 IV.II; 
WI2 180).  Non-human nature is continuous with human nature (N1 584, 587; WI2 V.I) 
and can only be understood through its continuity with human nature (N2 587; WI2 
V.III).  Royce writes that “the higher animals manifest their inner experience, apparently 
similar to ours, by expressive activities which resemble ours” (N2 590).  And the 
continuity of inner life must be extended at least to every organism that has a nervous 
system (N2 591-592).  Hence Thesis 1 must be generalized to make Thesis 2. 
 
Thesis 2 says that for every organism O, there exists an organic mind O* such that O is 
the sign of O*.  Royce writes that “All life, everywhere, in so far as it is life, has 
conscious meaning, and accomplishes a rational end” (WI2 240; Price, 1999).  Every 
organic mind is similar to a human mind (it is conscious, rational, ethically engaged).  
Every organic mind runs at a time-rate defined by its species.  Sets of organic minds form 
organic networks.  The minds in organic networks interact by exchanging linguistic 
signals.  Organic networks are organized on principles similar to those of human 
networks. 
 
And yet Thesis 2 is still not the whole story.  For if it were, then inorganic nature would 
be mindless and dead.  However, there is no dead nature.  For Royce says that “where we 
see inorganic nature seemingly dead, there is, in fact, conscious life” (WI2 240) and he 
says that there is no evidence for “the existence of dead material substance anywhere” 
(WI2 240; N2 586).  On the contrary, on the hypothesis of idealism, “a material region of 
the inorganic world would be to us the phenomenal sign of the presence of at least one 
fellow-creature who took, perhaps, a billion years to complete a moment of his 
consciousness” (WI2 228).  Thus nature is “the sign of the presence of other finite 
consciousness than our own” (WI2 228).  Hence Thesis 2 must be generalized. 
 
For every natural material thing M, there exists a substantial mind M* such that M is the 
sign of M* (N2 585, 586; WI2 213).  Inorganic nebulae are minds (WI2 227); hydrogen 
atoms may be minds (WI2 230).  Every substantial mind has a psychology like human 
psychology (N1 470, 471; WI2 228).  Every substantial mind is conscious (WI2 225-
226).  Every substantial mind runs at a time-rate defined by its natural kind (N2 595-596; 
WI2 225-228).  A mind may take “a millionth of a second . . . a minute, an hour, a year, a 
century, or a world-cycle” to complete one mental operation (N2 598).  Sets of 
substantial minds form substantial networks.  The minds in substantial networks interact 
by exchanging linguistic signals (N2 588).  These languages are mainly unintelligible to 
us (WI2 230-231, 236-237).  Yet the structural principles of substantial networks are 
similar to those of human networks (N1 472, 473; N2 584). 
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Of course, it may be objected that Thesis 3 is too general.  It is not the case that every 
material thing is a mind (WI2 233).  For instance, Royce says “I do not suppose that any 
individual thing, say this house, or yonder table, is a conscious being” (WI2 233).  To 
qualify Thesis 3, it is necessary to look more closely at the presence of regularity and 
irregularity in natural processes.  As natural processes tend toward pure regularity, they 
also tend toward unconsciousness (N2 592-594).  Mental life reveals itself, not by the 
pure regularity of habit, but by the “alteration of old habits to meet new conditions” (N2 
593).  And, according to Royce, when natural processes are viewed on the right time-
scales, they in fact exhibit this adaptive alteration of habit (N2 594-596). 
 
For convenience, let us simply say that a process is adaptive iff, on the appropriate time-
scale, it displays an alteration of old habits to meet new conditions.  Thesis 3 can now be 
qualified to say that every adaptive process is the sign of a mind.  This new version of 
Thesis 3 is illustrated by animals.  Individual animals are signs of animal minds.  But 
individual animals of the same species are signs of a single species-mind (WI2 232, 241).  
On large biological time-scales, this species-mind shows itself as adaptive.  Note that 
Royce allows minds to be parts of minds (WI2 238, 303-304); hence there is nothing 
wrong with saying that an individual animal mind is part of the species-mind. 
 
There is no reason to restrict mental life to processes that are similar in size or duration to 
human bodies and lives.  Every region of space may be animated by a mind (WI2 232).  
The smallest and fastest processes (e.g. at the atomic level) may be animated by minds 
(WI2 213, 230) while the largest and slowest processes (e.g. at the geological or 
astronomical levels) may be animated (WI2 227-228).  The turns of the earth, the orbits 
of the planets and the dynamics of the solar system may be signs of minds (N2 596).  The 
larger and slower minds may be more rational than human minds (WI2 231).  By analogy 
with animal species, even corporations and nations may be minds.28 
 
All these considerations motivate Thesis 4: for every adaptive process K, there exists a 
natural mind K* such that the activity in K is the sign of K*.  Every natural mind is has a 
psychology that is more or less similar to human psychology (e.g. it is conscious, 
rational, and morally involved with others).  Every natural mind runs at its own time-rate.  
Sets of natural minds form natural networks.  The minds in natural networks interact via 
linguistic signals.  Natural networks are organized on principles similar to those of human 
networks.  For example, many human networks are scale-free or small-world networks 
(Barabasi & Bonabeau, 2003).  These sorts of networks are found throughout nature. 
 
Although Royce indicates that pure regularity is the mark of unconsciousness, it may be 
objected that he went too far.  It seems more consistent with contemporary computational 
analyses of mentality to say that any algorithmically defined process (any computation) 
displays some non-zero degree of mentality (Doyle, 1991).  Purely regular processes have 
minimal (but non-zero) degrees of mentality.  And while Royce focuses on 
consciousness, it may be objected that more modern psychology has shown that not all 
mental processes are conscious processes.  For consistency with current science, the 
psycho-social concepts in Thesis 4 should be translated into computational concepts.  
This translation does no damage to the essential content of Royce’s idealism.  On the 
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contrary, it merely develops that content in a more modern and scientifically 
comprehensible way.  
 
The computational translation of Thesis 4 changes it in four ways.  The first way is that 
adaptive processes are replaced by algorithmically defined processes (by computations).  
The second way is that minds are replaced by software objects (which need not be 
conscious, rational, or morally involved).  The third way is that languages are replaced by 
semiotic systems (which need not be much like human languages).  The fourth way is 
that networks of software objects need not be much like human social networks.  
 
When Thesis 4 is translated, the result is Thesis 5: for every algorithmically defined 
process W, there exists a natural software object W* such that the activity in W is the 
sign of W*.  These processes may be as small as points or as large as space-time itself.  
Every natural software object is an information processor that has more or less similarity 
to natural minds.  Every natural software object runs at its own time-rate (its own clock-
speed).  Sets of natural software objects form natural networks.  The software objects in 
natural networks interact by exchanging signs in semiotic systems that are more or less 
like human languages.  The natural networks are more or less similar to human social 
networks.  
 
All the work done so far suggests a fourth point of contact between Royce and current 
analytic metaphysics.  One school of thought in current analytic metaphysics is known as 
structuralism.  Structuralists say that reality is a system of pure relations (Dipert, 1997).  
It has been suggested that Royce is a structuralist (Crouch, 2011).  One way to develop 
this suggestion looks like this: societies are purely relational structures of minds; minds 
are purely relational structures of thoughts; and thoughts are positions in purely relational 
semiotic systems.29  Of course, if the Model of the Essay is taken seriously, then all these 
structures supervene on numerical structures (e.g. Ketten of the form (N, ƒ)).  But the 
number system itself is purely relational (Resnik, 1997; Shapiro, 1997).  Here the contact 
between Royce and current analytic metaphysics is deep and fascinating. 
 
 
11. Conclusion 
 
At the very least, formal Roycean metaphysics involves the study of the structures that 
supervene on the iterations of the self-maps of the natural numbers.  But there are three 
main ways to further develop formal Roycean metaphysics. The first way includes the 
further developments of the Model within Royce’s own metaphysics.  In the last lecture 
of WI2 (Lecture X), Royce uses the Model to illustrate his theory of immortality.  He also 
refers to the Model in The Conception of Immortality (1900: 82-90).  The second way to 
further develop the Model involves the extension of the Model to greater ordinals.  The 
set of natural numbers is the least transfinite ordinal; but modern mathematics defines 
many greater ordinals (Hamilton, 1982: ch. 6).  Formal Roycean metaphysics includes 
the study of the structures that supervene on the iterations of the self-maps of greater 
ordinals.  These structures are currently studied in the theory of transfinite computation 
(e.g. Hamkins & Lewis, 2000; Koepe & Siders, 2008).  The third way to further develop 
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the Model involves deeper study of the ways it makes contact with recent analytic 
metaphysics and natural science.  There is much work that can be done in each of these 
three ways.  Formal Roycean metaphysics offers spectacular opportunities for deep 
mathematical, metaphysical, and scientific research.  It is a paradise waiting to be 
explored. 
 
 
1Royce (1897) contains the texts of the great debate.  It includes papers by Royce, Joseph 
Le Conte, G. H. Howison, and Sidney Mezes.  I will use the following abbreviations to 
refer to frequently cited works by Royce: N1 stands for Royce (1895A); N2 stands for 
Royce (1895B); CG stands for Royce (1897); SE stands for the Supplementary Essay 
(Royce, 1899); and WI2 stands for Royce (1901). 
2From the start to the finish of Volume 2 of The World and the Individual, Royce refers 
back to Supplementary Essay of Volume 1.  See WI2 18, 67, 75, 76, 83, 96-98, 105-106, 
146-147, 297-298, 303, 306, 446-451. 
3The reception of the metaphysical Model in the Essay was mixed: Peirce (1902), 
Leighton (1904) and Swenson (1916) are mainly negative; Loewenberg (1916) is 
positive; Haldar (1918) is highly positive; Monsman (1940) is critical but generally 
positive.  The Essay is barely mentioned in Jarvis (1975: 67-72). None of these authors 
develop Royce’s metaphysical Model any further.  Royce’s map of England is often 
noted in discussions of the history of the concept of infinity (e.g. Rucker, 1995: 38-41; 
Moore, 2001: 101-103).  Yet as Price (1999) notes, the Essay, and the metaphysics it 
inspires in the Second Volume of The World and the Individual, is buried in silence. 
4The iteration of ƒ can be used to define a series of functions.  Formally, for any n, ƒ0(n) 
= ƒ(n); for any k and for any n, ƒk+1(n) is ƒ(ƒk(n)).  The range of any function is the set of 
outputs of the function.  Royce observes that for any k, the range of each function ƒk+1 is a 
proper subset of the range of the previous function ƒk (SE 523-525).  For example, the 
range of ƒ0 is {0, 1, 2, 3, . . . }.  The range of ƒ1 is {0, 2, 4, 6, . . .}.  The range of ƒ2 is {0, 
4, 8, 12, . . . }.  The range of ƒ3 is {0, 8, 16, 24, . . .}.  So the range of ƒk+1 is always a 
proper part of the range of ƒk.  These ranges form a nested series.  The function ƒk 
corresponds to the k-th nested map of England within England.  
5On the one hand, a set is Dedekind infinite iff there is some one-to-one correspondence 
between the set and one of its proper subsets (SE 521).  On the other hand, a set is infinite 
iff it can be put into a one-to-one correspondence with some infinite cardinal number.  
This is a subtle technical distinction.  Since the set of natural numbers N is both infinite 
and Dedekind infinite, so long as Royce focuses on Ketten involving self-maps of N, this 
subtle distinction does not matter.  But what about Ketten involving other Dedekind 
infinite sets?  For modern mathematics, based on Zermelo-Fraenkel-Choice set theory, it 
is a theorem that a set is Dedekind infinite if and only if it is infinite (Hamilton, 1982: 
168-169).  This theorem requires the Axiom of Choice.  The Axiom of Choice is 
equivalent to the thesis that every set can be well-ordered (Hamilton, 1982: 172).  Royce 
seems to affirm this thesis (WI2 89).  If Royce really does affirm this well-ordering 
thesis, then it is sufficient to say that Royce is interested in Ketten in which the set is 
infinite. 
6For Royce’s purposes, it does no harm to allow that a Kette is any (N, ƒ) in which ƒ is a 
one-to-one map from N onto any subset of itself (whether proper or improper).  Since 
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Royce wants to avoid the inexactness produced by the fusion of many items into one item 
(SE 521), he merely needs to avoid Ketten in which ƒ is many-to-one. 
7It was quickly observed that any interpretation of these Ketten as selves is fraught with 
difficulties (Peirce, 8.125; Leighton, 1904; Santayana, 1920: 135-137). 
8It may be argued that each of these infinite forms of selfhood is the complete meaning of 
a finite human self.  However, that meaning is not a finite human self.  It is what Royce 
refers to as an Ethical Individual (WI2 445-452).  The formalization of the Model 
developed here is consistent with the existence of these Ethical Individuals. 
9On the interpretation advanced here, the thesis that the Absolute “defines itself as self-
representative” (SE 546, my italics) entails the thesis the Absolute Self is “a self-selected 
case of its type” (SE 566, my italics).  Thus exactly one Kette (N, ƒ) is self-selective 
within the set of all such Ketten.   Unfortunately, Royce is not clear about this. 
10Prior to developing the Model, Royce says that the total system of possibilities forms a 
group (CG 208-211).  The structure (F, •, I) is a semigroup.  The semigroup operator • is 
functional composition; the identity element I is I(n) = n for all n in N.  The structure (F, 
•, I) is a semigroup (and not a group) because not every ƒ in F has an inverse.  For the 
theories of semigroups and groups, see Stoll (1979: secs. 8.2 and 8.3). 
11When he is analyzing the necessary truth of the laws of arithmetic, C. I. Lewis says that 
they “would be true in any possible world” (1923A: 172).  Lewis goes on to define 
possible worlds as sets of facts (1923B; see Sedlar, 2009).  Thus Lewis provides a bridge 
from Royce to more modern analytic theories of modality. 
12Royce refers to the physical world as the World of Description.  He typically contrasts 
the World of Description with the World of Appreciation (e.g. WI2 26, 46, 155-156, etc.).  
On the interpretation developed here, the World of Appreciation is encoded in the 
Absolute Will via the construction that gives rise to the World of Description.   
13Any thought-stream is 〈n, ƒ(n), ƒ(ƒ(n)),  . . . 〉.  The repeated application of the ideal law 
ƒ to its own results over and over again generates the causal laws of the sequence.  
However, the iteration of ƒ is never exhausted by any fixed system of causal laws (WI2 
191-192).  Thus the iteration of ƒ is purposive.  Out of its own history, the iteration of ƒ 
perpetually generates novel patterns of causality involving new objects.  As time goes by, 
layers of ever more complex physical patterning emerge from earlier and simpler layers.  
For emergence, see Bedau (1997).  Any thought-stream thus supports an arrow of 
evolutionary complexity  (WI2 V).  Any thought-stream expresses a single plan or 
purpose (WI2 146-147).  Now Royce says that “Whatever expresses a single purpose has, 
as the expression of that purpose, an irreversible succession” (WI2 101).  This 
irreversibility manifests itself as the thermodynamic arrow of time (WI2 216-219).  The 
purposive flow of absolute thought manifests itself in the evolution of further physicality 
(WI2 219). 
14Any basic physical world serves as the basis for an objective system of classification 
(WI2 52).  This system provides the objective standard of truth against which our 
subjective statements must be compared for truth or falsity.  From the point of view of 
modern analytic metaphysics, this objective system of classifications is a formal semantic 
structure that supervenes on the basic physical world.  This formal semantic structure is 
the image of an objective reference function.  It therefore underwrites the truth-conditions 
that express what it means for a proposition P to be true at a thought-stream in S.  The 
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structure of our actual world is defined by the Absolute Will (WI2 137-139, 148).  This 
structure is objective: “God distinguishes what it pleases him to distinguish.  The logical 
as well as the moral problem is, Does my will accord with God’s will?” (WI2 52). 
15Royce talks about space and geometry (e.g. WI2 66-67, 78, 90-95, 100).  Yet he offers 
no clues on how a realistic space supervenes on a discrete temporal-causal series.  
16A natural number is perfect iff it is the sum of those factors of itself which are less than 
itself.  For instance, the factors of 6 less than 6 are 1, 2, and 3; but 6 = 1 + 2 + 3; so 6 is a 
perfect number.  The next perfect number is 28. 
17Formally, any natural number n is represented by 〈b0, b1, b2, . . . 〉 iff 
 n = bi2

i

i∈N
∑ . 

18Ulam’s original spiral starts with 1 and runs counterclockwise.  While Ulam was 
looking for patterns of prime numbers, we are merely mapping a 1D series onto a 2D 
grid.  For our purposes, the spiral can start with 0 and run clockwise or counterclockwise.  
19An (m+n)-dimensional space-time has m spatial dimensions and n temporal dimensions. 
20Norbert Wiener studied with Royce at Harvard from 1911 to 1913 (Wiener, 1948: 1).  
An initial study of the Royce-Wiener connection can be found in Peters (2010: ch. 2).  
Wiener went on to work with Bertrand Russell, David Hilbert, and John von Neumann. 
21Since every tape for a Turing Machine (TM) has only finitely many 1s, it is equivalent 
to a natural number.  And any action of the controller on the tape changes at most one bit 
on the tape.  It therefore produces another natural number.  So the action of any TM 
realizes a map from N to N.  Specifically, every TM is a Kette (N, ƒ) such that ƒ is an 
arithmetically recursive function from N to N.  Note that a Turing Machine with a one-
way tape is equivalent to one with a two-way infinite tape (Boolos, 1989: ch. 3). 
22The thought-streams in the Absolute contain more than just Turing computations.  
Giunti (1997) has defined computers that operate on standard tapes but that are more 
powerful than Turing Machines (they can jump directly to tape squares indexed with 
Rado numbers, and thus compute the Turing-uncomputable Busy Beaver function; see 
Boolos, 1989, ch. 4).  The set of Giunti computations includes but exceeds the set of 
Turing computations.  And since every Giunti computation is a path s(ƒ, n), every Giunti 
computation is a thought-stream in the Absolute.  But the set of functions from N to N is 
even more general.  More generally, every thought-stream s(ƒ, n) is a Royce computation. 
23Three lines of reasoning support the thesis that our universe is a computation.  The first 
line is theoretical.  Many physicists have argued that the physics of our universe is 
ultimately computational (Fredkin, Landauer, & Toffoli, 1982; Deutsch, 1985; Fredkin, 
1991; Zeilinger, 1999; Fredkin, 2003).  The second line comes from studies of the 
informational capacity of our universe.  Bekenstein & Schiffer (1990) argue that any 
finite quantity of matter can encode only finitely many bits of information.  Lloyd (2002) 
calculates that our universe so far has run only 10120 operations involving 10120 bits.  
These are finite numbers.  If our universe is only finitely complex, then it is 
computational.  The third line is statistical.  Zenil & Delahaye (2010) developed 
statistical methods for testing the hypothesis that processes within our universe are 
algorithmically generated.  Examining various physical data sets, they discovered 
correlations that support the hypothesis.  If all the processes in our universe are 
algorithmic, then our universe is computational. 
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24Some writers think that every possible software process supervenes on every hardware 
process (e.g. Putnam, 1988: 120-125; Searle, 1990: 25-27).  However, more careful 
logical work refutes that promiscuity (Copeland, 1996; Chalmers, 1996; Scheutz, 1999).  
It is not the case that every higher-level process supervenes on every lower-level process. 
25Using a spiral to wrap a bit string onto the grid, the figure that looks like an X is 20 + 22 
+ 24 + 26 + 28, which is 341; the diamond is 21 + 23 + 25 + 27, which is 170. 
26Using a spiral to wrap a bit string onto the grid, the horizontal bar is 20 + 21 + 25, which 
is 35; the vertical bar is 20 + 23 + 27, which is 137. 
27Advocates of digital mechanics say that our physical world is ultimately a digital 
system; it is a computation (which may be either finite or infinite).  Advocates of digital 
mechanics include writers like Fredkin (1991, 2003), Toffoli (1984, 1990), Schmidhuber 
(1997), Zeilinger (1999), Wolfram (2002), and many others. 
28An analogy (not developed by Royce) clarifies the relation of individual animal minds 
to the species-mind: just as old cells in our bodies are constantly replaced by genetically 
type-identical new ones, so the old individuals in an animal species are constantly 
replaced by type-identical new ones.  Organic wholes persist by replacement of type-
identical parts.  Continuing this analogy, super-organisms (e.g. insect colonies), 
corporations, and nations are organic wholes – they are software objects. 
29Structuralist approaches to societies and languages are already well-known.  One widely 
accepted thesis in analytic philosophy of mind says that minds are software objects.  This 
thesis is known as functionalism (Block, 1980).  Shapiro (1997: 106-108) shows that 
functionalism about minds is a kind of psychological structuralism. 
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